

The source code and dataset are available at:

https://github.com/AdroitAnandAI/Multilingual-Text-Inversion-Detection-of-Scanned-Images

Multilingual Text Inversion Detection using Shape Context

Anand P V1 Karthik K2

Innovation Incubator Advisory Pvt. Ltd.

Technopark, Thiruvananthapuram, India

VP – AI & Data Science1 AI Engineer2

 anand.pandithar@gmail.com1 k.karthik@ieee.org2

Abstract

It is common to have aberrations in manually scanned textual

documents. Document inversion is among the most frequent but a

harder anomaly to detect efficiently. Moreover, an algorithm that

may detect text inversion in one language may not work for

another language. Deep Learning can be a language-agnostic

solution, but they are not the most efficient. In this paper, we

present an inversion detection algorithm based on shape context,

which is a mathematical descriptor that uses log-polar

histograms to encode relative shape information. Furthermore, to

localize text blocks inside images, an efficient text bounding box

algorithm has been proposed. The end-to-end algorithmic

pipeline can localize text and detect inversion in multi-lingual

text documents. The experiments demonstrate the method to

have around 17.5x speed improvement vis-a-vis a standard Deep

Learning model, with near 100% accuracy on the test dataset.

Keywords: Multi-Lingual Documents; Inversion Detection; Text

Detection; Text Bounding Box

I. INTRODUCTION

More efficient and deterministic ways to solve a problem
are often preferred in the field of computer science. Deep
Learning, being so powerful, can be employed to solve many
complex tasks. However, it is prudent to use efficient
traditional methods, if comparable accuracy can be obtained.
Many of the algorithms “running on the Edge”, use computer
vision and traditional mathematics, rather than compute and
memory-intensive neural nets. Even otherwise, it is beneficial
to minimize the running time and resource usage, on traditional
workstations and cloud instances.

In this paper, scanned images of textual documents are
taken as input. The aim is to detect whether the documents are
inadvertently scanned bottom-up. Seemingly simple, as it may
sound, this is a daunting task for a computer, which represents
images and alphabets, as a 2-D or 3-D matrix of numbers.
Standard Deep Learning models can be used to do a binary
classification of upright vs. inverted images. Instead, we have
used pure arithmetic operations to represent the shape of
characters, so that inversion of shapes can be detected by
matching shape histograms. To complete the pipeline, the Text
Bounding Box Detection algorithm is proposed in Section III-B
to localize the text from images and feed it into the Inversion
Detection Algorithm proposed in Section III-D.

II. MANUAL SCANNED DOCUMENTS

A. Anomalies in Scanned Images

Image can become inverted when a document is scanned
upside-down. During the manual scan, other discrepancies like
skew or rotation also can naturally creep in. We can detect the
rotation angle by drawing a minimum area bounded rectangle
around all identified pixels so that it considers the rotation of
the document inherently. If lines are present in the document,
then they may become linear point clouds in the scanned
image. It is possible to identify the document skew angle by
analyzing the point cloud to find the best fit line, using Hough
Transformation [1] and Extended Hough Transformation [2].

While it is feasible to do skew correction and rotation
correction, the same idea may not work in the case of inverted
images as document angle, θ becomes zero. Moreover, the
document can unintentionally become inverted, after rotation
or skew correction, as a rotation of 90 + θ can be detected as -θ,
or -90 - θ as +θ. Thus, it is much harder to detect the inversion
of documents or images containing text, than other anomalies.

B. Related Work

The filling capacity of an upright and downside character
can be visually deciphered to be different. If we can find a
metric to measure the filling capacity of characters, then it
becomes possible to understand whether the document is
inverted or not. Such a metric, known as 'Water Fill Technique'
is given in this paper [3]. The sum of water fill capacity of the
upright and inverted characters in the scanned page is
computed and the image with lower capacity is classified to be
inverted. However, this method may not work in most non-
English languages.

Another method is known as 'Double Peaks', projects all the
pixels onto the y-axis. Thus, each line in the document would
result in 2 peaks, due to the shape of small English characters.
If more sub-peaks are found on the right side of each peak
corresponding to a line, then the document is upright. But the
“double peak logic” would falter when the text is in capital
letters or is in a non-English language. In this paper, we discuss
an end-to-end pipeline to automatically localize the alphabets
and words from multi-lingual document images and analyze
them using a mathematical shape descriptor to detect document
inversion in scanned images.

III. TEXT INVERSION DETECTION

To detect inversion, the location of text in the image needs
to be localized. The cropped image patch inside the localized
bounding box is fed into the ‘Inversion Detection Algorithm’
in Section III-D.

A. Text Bounding Box Detection

The textual content inside a natural scenic image can be
localized using the EAST (An Efficient and Accurate Scene
Text Detector) or CRAFT (Character Region Awareness for
Text Detection) method [4, 5]. EAST is a fully-convolutional
neural network model adapted for text detection. CRAFT is a
deep learning based character-level text detection technique,
that explores the affinity between characters to detect text area.
However, it is possible to detect characters, words and text area
more efficiently, as we deal with only textual documents here.
Experiments demonstrate logarithmic improvement in
efficiency when an arithmetic method is used to detect text
[Fig.1].

Fig. 1. Time: EAST (7.51s), CRAFT (3.19s),Contour Bounding Box (0.027s)

To identify the vertical boundaries of lines in an image, you
can project the pixels in the image along the y-axis and find
consecutive troughs. The consecutive troughs would
correspond to line separation, because of an absence of pixels
along the vertical gap between lines. However, this method
may not work when the image contains noise, as it may result
in unexpected spikes along the curve troughs. More efficient
and stable results are found possible by using the algorithm in
Section III-B, to localize text from images, based on dilation
and contour analysis.

B. Bounding Box Detection Algorithm

1. Invert the image and threshold to get white alphabets
in black background

2. Remove the lines using Hough Transformation [1], to
minimize interference in subsequent steps

3. Find 'C' = number of contours

4. Iterate Kernel Size, k from 3 to N, where N > 3

o Grow the size of foreground object using
Morphological Dilation [6] and Structuring
Element with Kernel Size, kxk

o Plot Contour Graph, i.e. the Number of
Contours Vs Kernel Size. The frequency of
contours will take a sudden dip when
characters get merged into words

o Fit an inverse sigmoid curve at the tail-end
of the Contour Graph, obtained above [7]

o If successful fit is found, then declare 'word-
merge' detection and break the iteration

5. Find the contours around the image, dilated with
kernel size identified to merge words

6. Draw Bounding Rectangle around the identified
contours to get "word" bounding boxes

7. Merge overlapped bounding boxes identified with IOU
(Intersection over Union) metric, using Non-Maximal
Suppression [8] used in the object detection pipeline.

 In a scanned image, the alphabets of every word
would be spatially nearby. Hence, dilation with bigger
kernels has a higher chance to merge the alphabets in a
word, as a single object. The number of contours before
dilation would represent the number of characters in the
image. Hence, the number of contours will suddenly
decrease, when the characters get merged into words.

 Imagine an ‘S’ shaped curve, mathematically
parameterized by a sigmoid function [9]. Such a curve
signifies a sudden hike in the y-axis value [Fig.2].

Fig. 2. Sigmoid-shaped curve signifies gradual increase and plateau of values

 Consider "Kernel Size" along the x-axis and 'Number
of Contours' along the y-axis to plot the ‘Contour Graph’.
When the number of contours goes down, the shape of the
curve will take the form of an inverse sigmoid function.
Find f (-x) to flip the sigmoid function about the x-axis.

 (1)

 Try to fit an inverse sigmoid function at the tail end of
the curve to detect the fall in the number of contours [10].
To detect word merge, the parametric curve fit algorithm
tries to solve a nonlinear least-squares problem to fit shape

of Equation (1) to the curve. For the curve in [Fig.3], the
kernel size to merge characters is found as 11x11.

Fig. 3. Contours vs Kernel Size: Inverse Sigmoid Curve for English Text.

Kernel Size is found 6~12 for English Text, and 25~30 for Malayalam Text.

 Empirically, the kernel size varies significantly across

different languages and fonts. Once kernel size, kxk is found,

take it as a constant for images from the same document or

book. Even if more words get merged due to variable

proximity of words, the ‘Inversion Detection Algorithm’ in

Section D will work.

C. Shape Context using Log-Bin Histogram

Textual characters in an image can be considered as objects
of different shapes, formed by pixels. We can represent the
shape of each character with the help of a shape descriptor
known as 'Shape Context' [11]. Log-polar histogram bins are
used to compute and compare shape contexts [Fig.4].

The log-polar histogram captures the angle and distance to
randomly sampled (n-1) points of a shape, measured from the
reference point. Thus, the log-bin histogram of similar shapes
tends to be near. As we increase the sampling density of the
edge points of a shape, the representation becomes increasingly
accurate [11].

Fig. 4. (a) Upright ‘J’ Shape (b) Inverted ‘J’ (c) Log-Polar histogram bins

 To identify an alphabet, find the pointwise correspondences
between edges of an alphabet shape and stored base images
alphabets. The base image needs to contain all the alpha-
numerals of a language or even special characters, that may be
present in the document. As the shape of each alphabet,
numeral, or special character is different, we can identify the
character from image patches [Fig.5].

To measure shape similarity, match the corresponding log-
bin histograms using Pearson’s chi-squared test [12]. To

identify the alphabet in an image patch, measure the similarity
of each alphabet with all the shapes found in the base image
and minimize the cost. The algorithm to detect inversion using
the sum of minimum match cost is given in Section D.

Fig. 5. (a) and (b) (n-1) vectors from a reference point from shape ‘J’ and

inverted ‘J’ (c) Log-Polar histogram visualization of Upright & Inverted ‘J’

 To find the total match cost of the text inside the bounding
box, sum up the minimum histogram match cost of each shape
inside the bounding box with each alpha-numeral in the base
image. The idea can be mathematically represented by,

 (2)

where m = Total number of characters in base image,

 n = Number of characters in Text Bounding Box,

pi & pj are corresponding points on the first and second shape
respectively. The cost of matching log-bin histograms of
corresponding points, C (pi , pj) denoted by Ci, j is computed by
Pearson’s ꭓ2 test statistic [12].

 (3)

where hi (k) & hj (k) represent K-bin normalized histogram at
pi and pj respectively. Alternatively, cosine distance can be
used to compare histograms efficiently. To find point-to-point
correspondence between shapes, we can solve the linear sum
assignment problem using the Hungarian algorithm [13].

Formally, let matrix C be the cost matrix, where C [i, j] is the
cost of matching point pi with pj and let X be a Boolean matrix
where X [i, j] = 1 when row ‘i’ is assigned to column ‘j’. The
optimal one-to-one assignment cost can be computed by,

 (4)

The method will work for multiple languages also, as the idea
hinges on the concept of shape. To identify a document in
another language, store and compare with the base alphabets of

the corresponding language. The applicability of the method
for multi-lingual documents is demonstrated in Section E.

D. Inversion Detection Algorithm

 The base image needs to contain all the possible characters
in the document. It will ideally contain small and upper case
alphabets of the language, along with numerals 0-9.

a) Use Bounding Box Detection Algorithm to find the
bounding box with ‘maximum width’ on one-page.

b) Crop the image inside the bounding box and apply
Canny edge detection [14].

c) Find bounding boxes around each character in the base
image and image from step (b)

d) Pick N points at random, from the edge points of each
character shape.

e) Construct the mathematical descriptor — shape context
— for each character.

f) Compare the log-polar histograms using Pearson’s chi-
squared test. Instead, use cosine distance to improve
the comparison speed.

g) Find the alphabet with minimum matching cost, among
all characters inside the base image.

Fig. 6. Upright & Inverted numbers against an all-numeral base image.

h) Compute β = Sum of minimum matching cost of each
character bounding box in input image containing text.

i) Flip the cropped from step (b) and iterate Step (d)-(h)
to compute β'

j) If β < β',

 then Input Document is Upright

 else Input Document is Inverted

E. Multi-Lingual Documents

 The ‘shape context’ (SC) as an idea, describes the concept
of shape mathematically. The algorithm gives distinguishable
‘Shape Match Score’ on upright and inverted documents in
various languages. Hence, the matching based on SC would
work on multiple languages as demonstrated below [Fig.7-9].

 The text bounding box detection is also a language-agnostic
algorithm, as dilation-based character merge depends only on
pixel proximity. However, the threshold value to be used to
classify inversion in various languages may be different.
Interestingly, we can extend the same idea to identify the
language from images.

Fig. 7. Inversion Detection on English Language text images.

Fig. 8. Inversion Detection on Greek Language text images.

Fig. 9. Inversion Detection on Malayalam (Indian Language) text images.

F. Language Identification

 Each language needs to have a separate base image, that
contains all the potential characters of the corresponding
language. The minimum matching cost of all characters inside
the detected bounding box (using the algorithm in Section B) is
added up to find the base image that minimizes the total cost.

The idea can be mathematically represented as,

(5)

where L = Number of languages possible,

 m, n = characters in base & bounding box image,

 pl, j = point in jth character of lth language,

 L* = Detected Language.

G. Limitations and Boundary Cases

The text bounding box with maximum width in the image
is fed into the ‘Inversion Detection Algorithm’. If the selected
bounding box contains only inverted text, then the entire image
would be classified as inverted.

If the selected bounding box contains only those characters
which look the same after inversion, then the algorithm may
not work. To explicate, the capital letters such as “I”, “C”, “O”,
“D”, “K” etc. are visually similar, post-inversion.

When such documents are expected, more bounding boxes
need to be analyzed for inversion detection. Further, the text
bounding box algorithm is designed to work only on textual
scanned images and not on natural scenes.

IV. RESULT & TIMING ANALYSIS

The confusion matrix for the ‘Shape Context’ method and a
trained VGG-16 Neural Network model is shown in Fig.10, 11.
The predicted label is on x-axis and the true label on y-axis.

Fig. 10. Shape Context Method on a test dataset of 100 images.

Fig. 11. Trained VGG-16 CNN Model on a test dataset of 100 images.

A. Timing Analysis

To enable comparison with Deep Learning model, a VGG-
16 CNN network is trained with labeled upright and inverted
images. The total time taken to detect text bounding boxes
(with a constant kxk size) and pattern matching based on shape
context is compared against VGG-16 inference time [Fig.12].

Fig. 12. VGG-16 vs Bounding Box Detection and SC Pattern Matching.

Given an image, the bounding box detection algorithm in

Section III B takes 0.017 seconds to estimate kernel size, k. All

the experiments were done on i7/ 16 GB/ 6GB 1660i machine.

V. CONCLUSION

We have proposed an end-to-end algorithmic pipeline to
identify occurrences of text from a scanned image and to detect
text inversion from image patches, irrespective of language.
The appealing features of our approach are simplicity, speed,
and language-agnosticism. Experiments demonstrate, both the
algorithms, i.e. Text Bounding Box and Inversion Detection,
perform comparably robust and much faster than their Deep
Learning counterparts.

ACKNOWLEDGMENT

The authors would like to thank the organization,
‘Innovation Incubator Advisory Pvt. Ltd’ for the extended
support to make this work possible.

REFERENCES

[1] Atiquzzaman, Mohammed, and Mohammed W. Akhtar. "Complete line

segment description using the Hough transform." Image and Vision
computing 12.5 (1994): 267-273.

[2] Kamat, Varsha, and Subramaniam Ganesan. "A robust Hough transform
technique for description of multiple line segments in an image."
Proceedings 1998 International Conference on Image Processing.
ICIP98 (Cat. No. 98CB36269). Vol. 1. IEEE, 1998.

[3] Pilevar, Hamid. "Inversion detection in text document images." 9th Joint
International Conference on Information Sciences (JCIS-06). Atlantis
Press, 2006.

[4] Zhou, Xinyu, et al. "East: an efficient and accurate scene text detector."
Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition. 2017.

[5] Baek, Youngmin, et al. "Character region awareness for text detection."
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2019.

[6] Ravi, S., and A. M. Khan. "Morphological operations for image
processing: understanding and its applications." Proc. 2nd National
Conference on VLSI, Signal processing & Communications
NCVSComs-2013. 2013.

[7] Anand P.V., "The Power of Mathematical Ingenuity". Available from:

https://towardsdatascience.com/the-power-of-mathematical-ingenuity-
49c7b6cfe05e [Published on Jan 1, 2020]

[8] Bodla, Navaneeth, et al. "Soft-NMS--improving object detection with
one line of code." Proceedings of the IEEE international conference on
computer vision. 2017.

[9] Han, Jun, and Claudio Moraga. "The influence of the sigmoid function
parameters on the speed of backpropagation learning." International

Workshop on Artificial Neural Networks. Springer, Berlin, Heidelberg,
1995.

[10] Anand P.V., "Touch-less Display Interfaces on Edge". Available from:

https://towardsdatascience.com/touch-less-display-interfaces-on-edge-
be8dc277c5b8 [Published on Sep 21, 2020]

[11] Belongie, Serge, Jitendra Malik, and Jan Puzicha. "Shape context: A
new descriptor for shape matching and object recognition." Advances in
neural information processing systems 13 (2000): 831-837.

[12] Belongie, Serge, Jitendra Malik, and Jan Puzicha. "Shape matching and
object recognition using shape contexts." IEEE transactions on pattern
analysis and machine intelligence 24.4 (2002): 509-522.

[13] Kuhn, Harold W. "The Hungarian method for the assignment problem."
Naval research logistics quarterly 2.1‐2 (1955): 83-97.

[14] Canny, John. "A computational approach to edge detection." IEEE
Transactions on pattern analysis and machine intelligence 6 (1986): 679-
698

