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Abstract 

It is common to have aberrations in manually scanned textual 

documents. Document inversion is among the most frequent but a 

harder anomaly to detect efficiently. Moreover, an algorithm that 

may detect text inversion in one language may not work for 

another language. Deep Learning can be a language-agnostic 

solution, but they are not the most efficient. In this paper, we 

present an inversion detection algorithm based on shape context, 

which is a mathematical descriptor that uses log-polar 

histograms to encode relative shape information. Furthermore, to 

localize text blocks inside images, an efficient text bounding box 

algorithm has been proposed. The end-to-end algorithmic 

pipeline can localize text and detect inversion in multi-lingual 

text documents. The experiments demonstrate the method to 

have around 17.5x speed improvement vis-a-vis a standard Deep 

Learning model, with near 100% accuracy on the test dataset. 

Keywords: Multi-Lingual Documents; Inversion Detection; Text 

Detection; Text Bounding Box 

I.  INTRODUCTION 

More efficient and deterministic ways to solve a problem 
are often preferred in the field of computer science. Deep 
Learning, being so powerful, can be employed to solve many 
complex tasks. However, it is prudent to use efficient 
traditional methods, if comparable accuracy can be obtained. 
Many of the algorithms “running on the Edge”, use computer 
vision and traditional mathematics, rather than compute and 
memory-intensive neural nets. Even otherwise, it is beneficial 
to minimize the running time and resource usage, on traditional 
workstations and cloud instances. 

In this paper, scanned images of textual documents are 
taken as input. The aim is to detect whether the documents are 
inadvertently scanned bottom-up. Seemingly simple, as it may 
sound, this is a daunting task for a computer, which represents 
images and alphabets, as a 2-D or 3-D matrix of numbers. 
Standard Deep Learning models can be used to do a binary 
classification of upright vs. inverted images. Instead, we have 
used pure arithmetic operations to represent the shape of 
characters, so that inversion of shapes can be detected by 
matching shape histograms. To complete the pipeline, the Text 
Bounding Box Detection algorithm is proposed in Section III-B 
to localize the text from images and feed it into the Inversion 
Detection Algorithm proposed in Section III-D. 

II. MANUAL SCANNED DOCUMENTS 

A. Anomalies in Scanned Images 

Image can become inverted when a document is scanned 
upside-down. During the manual scan, other discrepancies like 
skew or rotation also can naturally creep in. We can detect the 
rotation angle by drawing a minimum area bounded rectangle 
around all identified pixels so that it considers the rotation of 
the document inherently. If lines are present in the document, 
then they may become linear point clouds in the scanned 
image. It is possible to identify the document skew angle by 
analyzing the point cloud to find the best fit line, using Hough 
Transformation [1] and Extended Hough Transformation [2].  

While it is feasible to do skew correction and rotation 
correction, the same idea may not work in the case of inverted 
images as document angle, θ becomes zero. Moreover, the 
document can unintentionally become inverted, after rotation 
or skew correction, as a rotation of 90 + θ can be detected as -θ, 
or -90 - θ as +θ. Thus, it is much harder to detect the inversion 
of documents or images containing text, than other anomalies. 

B. Related Work 

The filling capacity of an upright and downside character 
can be visually deciphered to be different. If we can find a 
metric to measure the filling capacity of characters, then it 
becomes possible to understand whether the document is 
inverted or not. Such a metric, known as 'Water Fill Technique' 
is given in this paper [3]. The sum of water fill capacity of the 
upright and inverted characters in the scanned page is 
computed and the image with lower capacity is classified to be 
inverted. However, this method may not work in most non-
English languages. 

Another method is known as 'Double Peaks', projects all the 
pixels onto the y-axis. Thus, each line in the document would 
result in 2 peaks, due to the shape of small English characters. 
If more sub-peaks are found on the right side of each peak 
corresponding to a line, then the document is upright. But the 
“double peak logic” would falter when the text is in capital 
letters or is in a non-English language. In this paper, we discuss 
an end-to-end pipeline to automatically localize the alphabets 
and words from multi-lingual document images and analyze 
them using a mathematical shape descriptor to detect document 
inversion in scanned images. 



 

 

III. TEXT INVERSION DETECTION 

To detect inversion, the location of text in the image needs 
to be localized. The cropped image patch inside the localized 
bounding box is fed into the ‘Inversion Detection Algorithm’ 
in Section III-D. 

A. Text Bounding Box Detection 

The textual content inside a natural scenic image can be 
localized using the EAST (An Efficient and Accurate Scene 
Text Detector) or CRAFT (Character Region Awareness for 
Text Detection) method [4, 5]. EAST is a fully-convolutional 
neural network model adapted for text detection. CRAFT is a 
deep learning based character-level text detection technique, 
that explores the affinity between characters to detect text area. 
However, it is possible to detect characters, words and text area 
more efficiently, as we deal with only textual documents here. 
Experiments demonstrate logarithmic improvement in 
efficiency when an arithmetic method is used to detect text 
[Fig.1].  

 

Fig. 1. Time: EAST (7.51s), CRAFT (3.19s),Contour Bounding Box (0.027s) 

To identify the vertical boundaries of lines in an image, you 
can project the pixels in the image along the y-axis and find 
consecutive troughs. The consecutive troughs would 
correspond to line separation, because of an absence of pixels 
along the vertical gap between lines. However, this method 
may not work when the image contains noise, as it may result 
in unexpected spikes along the curve troughs. More efficient 
and stable results are found possible by using the algorithm in 
Section III-B, to localize text from images, based on dilation 
and contour analysis. 

B. Bounding Box Detection Algorithm 

1. Invert the image and threshold to get white alphabets 
in black background 

2. Remove the lines using Hough Transformation [1], to 
minimize interference in subsequent steps 

3. Find 'C' = number of contours 

4. Iterate Kernel Size, k from 3 to N, where N > 3 

o Grow the size of foreground object using 
Morphological Dilation [6] and Structuring 
Element with Kernel Size, kxk 

o Plot Contour Graph, i.e. the Number of 
Contours Vs Kernel Size. The frequency of 
contours will take a sudden dip when 
characters get merged into words 

o Fit an inverse sigmoid curve at the tail-end 
of the Contour Graph, obtained above [7] 

o If successful fit is found, then declare 'word-
merge' detection and break the iteration 

5. Find the contours around the image, dilated with 
kernel size identified to merge words 

6. Draw Bounding Rectangle around the identified 
contours to get "word" bounding boxes 

7. Merge overlapped bounding boxes identified with IOU 
(Intersection over Union) metric, using Non-Maximal 
Suppression [8] used in the object detection pipeline.  

 In a scanned image, the alphabets of every word 
would be spatially nearby. Hence, dilation with bigger 
kernels has a higher chance to merge the alphabets in a 
word, as a single object. The number of contours before 
dilation would represent the number of characters in the 
image. Hence, the number of contours will suddenly 
decrease, when the characters get merged into words.  

 Imagine an ‘S’ shaped curve, mathematically 
parameterized by a sigmoid function [9]. Such a curve 
signifies a sudden hike in the y-axis value [Fig.2]. 

 

Fig. 2. Sigmoid-shaped curve signifies gradual increase and plateau of values 

 Consider "Kernel Size" along the x-axis and 'Number 
of Contours' along the y-axis to plot the ‘Contour Graph’. 
When the number of contours goes down, the shape of the 
curve will take the form of an inverse sigmoid function. 
Find f (-x) to flip the sigmoid function about the x-axis. 
 

                                                    (1) 

  
 Try to fit an inverse sigmoid function at the tail end of 
the curve to detect the fall in the number of contours [10]. 
To detect word merge, the parametric curve fit algorithm 
tries to solve a nonlinear least-squares problem to fit shape 



 

 

of Equation (1) to the curve. For the curve in [Fig.3], the 
kernel size to merge characters is found as 11x11.  

 

Fig. 3. Contours vs Kernel Size: Inverse Sigmoid Curve for English Text. 

Kernel Size is found 6~12 for English Text, and 25~30 for Malayalam Text. 

 Empirically, the kernel size varies significantly across 

different languages and fonts. Once kernel size, kxk is found, 

take it as a constant for images from the same document or 

book. Even if more words get merged due to variable 

proximity of words, the ‘Inversion Detection Algorithm’ in 

Section D will work. 

C. Shape Context using Log-Bin Histogram 

Textual characters in an image can be considered as objects 
of different shapes, formed by pixels. We can represent the 
shape of each character with the help of a shape descriptor 
known as 'Shape Context' [11]. Log-polar histogram bins are 
used to compute and compare shape contexts [Fig.4]. 

The log-polar histogram captures the angle and distance to 
randomly sampled (n-1) points of a shape, measured from the 
reference point. Thus, the log-bin histogram of similar shapes 
tends to be near. As we increase the sampling density of the 
edge points of a shape, the representation becomes increasingly 
accurate [11]. 

 

Fig. 4. (a) Upright ‘J’ Shape   (b) Inverted ‘J’   (c) Log-Polar histogram bins  

 To identify an alphabet, find the pointwise correspondences 
between edges of an alphabet shape and stored base images 
alphabets. The base image needs to contain all the alpha-
numerals of a language or even special characters, that may be 
present in the document. As the shape of each alphabet, 
numeral, or special character is different, we can identify the 
character from image patches [Fig.5]. 

To measure shape similarity, match the corresponding log-
bin histograms using Pearson’s chi-squared test [12]. To 

identify the alphabet in an image patch, measure the similarity 
of each alphabet with all the shapes found in the base image 
and minimize the cost. The algorithm to detect inversion using 
the sum of minimum match cost is given in Section D.  

 

Fig. 5. (a) and (b) (n-1) vectors from a reference point from shape ‘J’ and 

inverted ‘J’  (c) Log-Polar histogram visualization of Upright & Inverted ‘J’ 

 To find the total match cost of the text inside the bounding 
box, sum up the minimum histogram match cost of each shape 
inside the bounding box with each alpha-numeral in the base 
image. The idea can be mathematically represented by, 

 

                         (2) 
  
 

where m = Total number of characters in base image,  

  n = Number of characters in Text Bounding Box, 

pi & pj are corresponding points on the first and second shape 
respectively. The cost of matching log-bin histograms of 
corresponding points, C (pi , pj) denoted by Ci, j is computed by 
Pearson’s ꭓ2 test statistic [12]. 

 

        (3) 
  
  
where hi (k) & hj (k) represent K-bin normalized histogram at 
pi and pj respectively. Alternatively, cosine distance can be 
used to compare histograms efficiently. To find point-to-point 
correspondence between shapes, we can solve the linear sum 
assignment problem using the Hungarian algorithm [13]. 

Formally, let matrix C be the cost matrix, where C [i, j] is the 
cost of matching point pi with pj and let X be a Boolean matrix 
where X [i, j] = 1 when row ‘i’ is assigned to column ‘j’. The 
optimal one-to-one assignment cost can be computed by, 

 

                       (4) 
  
The method will work for multiple languages also, as the idea 
hinges on the concept of shape. To identify a document in 
another language, store and compare with the base alphabets of 



 

 

the corresponding language. The applicability of the method 
for multi-lingual documents is demonstrated in Section E. 

D. Inversion Detection Algorithm 

 The base image needs to contain all the possible characters 
in the document. It will ideally contain small and upper case 
alphabets of the language, along with numerals 0-9. 

a) Use Bounding Box Detection Algorithm to find the 
bounding box with ‘maximum width’ on one-page. 

b) Crop the image inside the bounding box and apply 
Canny edge detection [14]. 

c) Find bounding boxes around each character in the base 
image and image from step (b) 

d) Pick N points at random, from the edge points of each 
character shape. 

e) Construct the mathematical descriptor — shape context 
—  for each character. 

f) Compare the log-polar histograms using Pearson’s chi-
squared test. Instead, use cosine distance to improve 
the comparison speed. 

g) Find the alphabet with minimum matching cost, among 
all characters inside the base image. 

 

Fig. 6. Upright & Inverted numbers against an all-numeral base image. 

h) Compute β = Sum of minimum matching cost of each 
character bounding box in input image containing text. 

i) Flip the cropped from step (b) and iterate Step (d)-(h) 
to compute β' 

j) If β < β', 

     then Input Document is Upright 

     else Input Document is Inverted 

E. Multi-Lingual Documents 

 The ‘shape context’ (SC) as an idea, describes the concept 
of shape mathematically. The algorithm gives distinguishable 
‘Shape Match Score’ on upright and inverted documents in 
various languages. Hence, the matching based on SC would 
work on multiple languages as demonstrated below [Fig.7-9]. 

 The text bounding box detection is also a language-agnostic 
algorithm, as dilation-based character merge depends only on 
pixel proximity. However, the threshold value to be used to 
classify inversion in various languages may be different. 
Interestingly, we can extend the same idea to identify the 
language from images. 

 

 

Fig. 7. Inversion Detection on English Language text images. 

 

Fig. 8. Inversion Detection on Greek Language text images. 

 

Fig. 9. Inversion Detection on Malayalam (Indian Language) text images. 

F. Language Identification 

 Each language needs to have a separate base image, that 
contains all the potential characters of the corresponding 
language. The minimum matching cost of all characters inside 
the detected bounding box (using the algorithm in Section B) is 
added up to find the base image that minimizes the total cost. 

The idea can be mathematically represented as, 
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where  L = Number of languages possible, 

  m, n = characters in base & bounding box image, 

  pl, j = point in jth character of lth language, 

  L* = Detected Language. 

G. Limitations and Boundary Cases 

The text bounding box with maximum width in the image 
is fed into the ‘Inversion Detection Algorithm’. If the selected 
bounding box contains only inverted text, then the entire image 
would be classified as inverted.  

If the selected bounding box contains only those characters 
which look the same after inversion, then the algorithm may 
not work. To explicate, the capital letters such as “I”, “C”, “O”, 
“D”, “K” etc. are visually similar, post-inversion. 

When such documents are expected, more bounding boxes 
need to be analyzed for inversion detection. Further, the text 
bounding box algorithm is designed to work only on textual 
scanned images and not on natural scenes. 

IV. RESULT & TIMING ANALYSIS 

The confusion matrix for the ‘Shape Context’ method and a 
trained VGG-16 Neural Network model is shown in Fig.10, 11. 
The predicted label is on x-axis and the true label on y-axis. 

 

Fig. 10. Shape Context Method on a test dataset of 100 images. 

 

Fig. 11. Trained VGG-16 CNN Model on a test dataset of 100 images. 

A. Timing Analysis 

To enable comparison with Deep Learning model, a VGG-
16 CNN network is trained with labeled upright and inverted 
images. The total time taken to detect text bounding boxes 
(with a constant kxk size) and pattern matching based on shape 
context is compared against VGG-16 inference time [Fig.12]. 

 

Fig. 12. VGG-16 vs Bounding Box Detection and SC Pattern Matching. 

Given an image, the bounding box detection algorithm in 

Section III B takes 0.017 seconds to estimate kernel size, k. All 

the experiments were done on i7/ 16 GB/ 6GB 1660i machine. 

V. CONCLUSION 

We have proposed an end-to-end algorithmic pipeline to 
identify occurrences of text from a scanned image and to detect 
text inversion from image patches, irrespective of language. 
The appealing features of our approach are simplicity, speed, 
and language-agnosticism. Experiments demonstrate, both the 
algorithms, i.e. Text Bounding Box and Inversion Detection, 
perform comparably robust and much faster than their Deep 
Learning counterparts.  
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